Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 15(39): 45561-45573, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37729472

RESUMO

Surgical sutures designed to prevent infection are critical in addressing antibiotic-resistant pathogens that cause surgical site infections. Instead of antibiotics, alternative materials such as biocides have been assessed for coating commercially used sutures due to emerging antibiotic resistance concerns worldwide. This study has a new approach to the development of fibrous surgical sutures with the ability to deliver localized antibacterial agents. A new manufacturing process based on pressure spinning was used for the first time in the production of fibrous surgical sutures by physically blending antibacterial triclosan (Tri) agent with poly(lactic-co-glycolic acid) (PLGA) and poly(ethylene oxide) (PEO) polymers. Fibrous surgical sutures with virgin PLGA, virgin PEO, different ratios of PLGA-PEO, and different ratios of Tri-loaded PLGA-PEO fibrous sutures were produced to mimic the FDA- and NICE-approved PLGA-based sutures available in the market and compared for their characteristics. They were also tested simultaneously with commercially available sutures to compare their in vitro biodegradation, antibacterial, drug release, and cytotoxicity properties. After in vitro antibacterial testing for 24 h, sutures having 285 ± 12 µg/mg Tri loading were selected as a model for further testing as they exhibited antibacterial activity against all tested bacteria strains. The selected model of antibacterial fibrous sutures exhibited an initial burst of Tri release within 24 h, followed by a sustained release for the remaining time until the sutures completely degraded within 21 days. The cell viability assay showed that these surgical sutures had no cytotoxic effect on mammalian cells.


Assuntos
Antibacterianos , Triclosan , Animais , Antibacterianos/farmacologia , Suturas , Triclosan/farmacologia , Polímeros , Mamíferos
2.
Int J Biol Macromol ; 239: 124334, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028621

RESUMO

The superiority of self-healing hydrogel systems with dynamic covalent chemistry is the ability to establish the gel network structure despite changes in ambient conditions such as pH, temperature, and ion concentrations. The Schiff base reaction, which occurs through aldehyde and amine groups, allows dynamic covalent bonds at physiological pH and temperature. In this study, gelation kinetics between glycerol multi-aldehyde (GMA) and water-soluble form of chitosan, carboxymethyl chitosan (CMCS), has been investigated, and the self-healing ability has been evaluated in detail. Macroscopic and electron microscope-based visual inspection and rheological tests showed that the hydrogels exhibit the highest self-healing capacity at 3-4 % CMCS and 0.5-1 % GMA concentrations. Hydrogel samples were subjected to alternating high and low strains to deteriorate and rebuild the elastic network structure. The results showed that hydrogels could restore their physical integrity after applying 200 % strains. In addition, direct cell encapsulation and double staining tests showed that the samples do not possess any acute cytotoxicity on mammalian cells; hence, hydrogels could potentially be used in tissue engineering applications for soft tissues.


Assuntos
Quitosana , Hidrogéis , Animais , Hidrogéis/química , Quitosana/química , Glicerol , Aldeídos , Cinética , Mamíferos
3.
Langmuir ; 39(9): 3400-3410, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36786472

RESUMO

This study presents the electrostatic repulsive features of electrochemically fabricated titanium dioxide nanotube (NT)-based membranes with different surface nanomorphologies in cross-flow biofiltration applications while maintaining a creatinine clearance above 90%. Although membranes exhibit antifouling behavior, their blood protein rejection can still be improved. Due to the electrostatically negative charge of the hexafluorotitanate moiety, the fabricated biocompatible, superhydrophilic, free-standing, and amorphous ceramic nanomembranes showed that about 20% of negatively charged 66 kDa blood albumin was rejected by the membrane with ∼100 nm pores. As the nanomorphology of the membrane was shifted from NTs to nanowires by varying fabrication parameters, pure water flux and bovine serum albumin (BSA) rejection performance were reduced, and the membrane did not lose its antifouling behavior. Herein, nanomembranes with different surface nanomorphologies were fabricated by a multi-step anodic oxidation process and characterized by scanning electron microscopy, atomic force microscopy, water contact angle analysis, X-ray diffraction, and energy-dispersive X-ray spectroscopy. The membrane performance of samples was measured in 3D printed polyethylene terephthalate glycol flow cells replicating implantable artificial kidney models to determine their blood toxin removal and protein loss features. In collected urine mimicking samples, creatinine clearances and BSA rejections were measured by the spectrophotometric Jaffe method and high-performance liquid chromatography.


Assuntos
Nanotubos , Soroalbumina Bovina , Creatinina , Eletricidade Estática , Soroalbumina Bovina/química , Água/química , Membranas Artificiais
4.
Langmuir ; 38(36): 10917-10933, 2022 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-36018789

RESUMO

Long-term stability of microbubbles is crucial to their effectiveness. Using a new microfluidic device connecting three T-junction channels of 100 µm in series, stable monodisperse SiQD-loaded bovine serum albumin (BSA) protein microbubbles down to 22.8 ± 1.4 µm in diameter were generated. Fluorescence microscopy confirmed the integration of SiQD on the microbubble surface, which retained the same morphology as those without SiQD. The microbubble diameter and stability in air were manipulated through appropriate selection of T-junction numbers, capillary diameter, liquid flow rate, and BSA and SiQD concentrations. A predictive computational model was developed from the experimental data, and the number of T-junctions was incorporated into this model as one of the variables. It was illustrated that the diameter of the monodisperse microbubbles generated can be tailored by combining up to three T-junctions in series, while the operating parameters were kept constant. Computational modeling of microbubble diameter and stability agreed with experimental data. The lifetime of microbubbles increased with increasing T-junction number and higher concentrations of BSA and SiQD. The present research sheds light on a potential new route employing SiQD and triple T-junctions to form stable, monodisperse, multi-layered, and well-characterized protein and quantum dot-loaded protein microbubbles with enhanced stability for the first time.


Assuntos
Microbolhas , Pontos Quânticos , Dispositivos Lab-On-A-Chip , Microfluídica , Soroalbumina Bovina , Silício
5.
ACS Biomater Sci Eng ; 8(3): 1290-1300, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35232011

RESUMO

Silk fibroin (SF) fibers are highly regarded in tissue engineering because of their outstanding biocompatibility and tunable properties. A challenge remains in overcoming the trade-off between functioning and biocompatible fibers and the use of cytotoxic, environmentally harmful organic solvents in their processing and formation. The aim of this research was to produce biocompatible SF fibers without the use of cytotoxic solvents, via pressurized gyration (PG). Aqueous SF was blended with poly(ethylene oxide) (PEO) in ratios of 80:20 (labeled SF-PEO 80:20) and 90:10 (labeled SF-PEO 90:10) and spun into fibers using PG, assisted by a range of applied pressures and heat. Pure PEO (labeled PEO-Aq) and SF solubilized in hexafluoro-isopropanol (HFIP) (labeled SF-HFIP) and aqueous SF (labeled SF-Aq) were also prepared for comparison. The resulting fibers were characterized using SEM, TGA, and FTIR. Their in vitro cell behavior was analyzed using a Live/Dead assay and cell proliferation studies with the SaOS-2 human bone osteosarcoma cell line (ATCC, HTB-85) and human fetal osteoblast cells (hFob) (ATCC, CRL-11372) in 2D culture conditions. Fibers in the micrometer range were successfully produced using SF-PEO blends, SF-HFIP, and PEO-Aq. The fiber thickness ranged from 0.71 ± 0.17 µm for fibers produced using SF-PEO 90:10 with no applied pressure to 2.10 ± 0.78 µm for fibers produced using SF-PEO 80:10 with 0.3 MPa applied pressure. FTIR confirmed the presence of SF via amide I and amide II bands in the blend fibers because of a change in structural conformation. No difference was observed in thermogravimetric properties among varying pressures and no significant difference in fiber diameters for pressures. SaOS-2 cells and hFOb cell studies demonstrated higher cell densities and greater live cells on SF-PEO blends when compared to SF-HFIP. This research demonstrates a scalable and green method of producing SF-based constructs for use in bone-tissue engineering applications.


Assuntos
Fibroínas , Amidas , Óxido de Etileno , Fibroínas/química , Humanos , Polietilenoglicóis/química , Solventes , Engenharia Tecidual/métodos , Água/química
6.
Biointerphases ; 18(6)2022 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-38063476

RESUMO

Protein adsorption behavior can play a critical role in defining the outcome of a material by affecting the subsequent in vivo response to it. To date, the effect of surface properties on protein adsorption behavior has been mainly focused on surface chemistry, but research on the effect of nanoscale surface topography remains limited. In this study, the adsorption behavior of human serum albumin, immunoglobulin G, and fibrinogen in terms of the adsorbed amount and conformational changes were investigated on bare and anodized titanium (Ti) samples (40 and 60 V applied voltages). While the surface chemistry, RMS surface roughness, and arithmetic surface roughness of the anodized samples were similar, they had distinctly different nanomorphologies identified by atomic force microscopy and scanning electron microscopy, and the surface statistical parameters, surface skewness Ssk and kurtosis Sku. The Feret pore size distribution was more uniform on the 60 V sample, and surface nanostructures were more symmetrical with higher peaks and deeper pores. On the other hand, the 40 V sample surface presented a nonuniform pore size distribution and asymmetrical surface nanostructures with lower peaks and shallower pores. The amount of surface-adsorbed protein increased on the sample surfaces in the order of Ti < 40 V < 60 V with the predominant factor affecting the amount of surface-adsorbed protein being the increased surface area attained by pore formation. The secondary structure of all adsorbed proteins deviated from that of their native counterparts. While comparing the secondary structure components of proteins on anodized surfaces, it was observed that all three proteins retained more of their secondary structure composition on the surface with more uniform and symmetrical nanofeatures than the surface having asymmetrical nanostructures. Our results suggest that the nanomorphology of the peaks and outer walls of the nanotubes can significantly influence the conformation of adsorbed serum proteins, even for surfaces having similar roughness values.

7.
MedComm (2020) ; 2(2): 236-246, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34766144

RESUMO

Fibrous constructs with incorporated cinnamon-extract have previously been shown to have potent antifungal abilities. The question remains to whether these constructs are useful in the prevention of bacterial infections in fiber form and what the antimicrobial effects means in terms of toxicity to the native physiological cells. In this work, cinnamon extract containing poly (ε-caprolactone) (PCL) fibers were successfully manufactured by pressurized gyration and had an average size of ∼2 µm. Cinnamon extract containing PCL fibers were tested against Escherichia coli, Staphylococcus aureus, Methicillin resistant staphylococcus aureus, and Enterococcus faecalis bacterial species to assess their antibacterial capacity; it was found that these fibers were able to reduce viable cell numbers of the bacterial species up to two orders of magnitude lower than the control group. The results of the antibacterial tests were assessed by scanning electron microscopy (SEM). The constructs were also tested under indirect MTT tests where they showed little to no toxicity, similar to the control groups. Additionally, cell viability fluorescent imaging displayed no significant toxicity issues with the fibers, even at their highest tested concentration. Here we present a viable method for the production the non-toxic and naturally abundant cinnamon extracted fibers for numerous biomedical applications.

8.
Macromol Biosci ; 21(10): e2100177, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34310053

RESUMO

The present study aspires towards fabricating core-sheath fibrous scaffolds by state-of-the-art pressurized gyration for bone tissue engineering applications. The core-sheath fibers comprising dual-phase poly-ε-caprolactone (PCL) core and polyvinyl alcohol (PVA) sheath are fabricated using a novel "co-axial" pressurized gyration method. Hydroxyapatite (HA) nanocrystals are embedded in the sheath of the fabricated scaffolds to improve the performance for application as a bone tissue regeneration material. The diameter of the fabricated fiber is 3.97 ± 1.31 µm for PCL-PVA/3%HA while pure PCL-PVA with no HA loading gives 3.03 ± 0.45 µm. Bead-free fiber morphology is ascertained for all sample groups. The chemistry, water contact angle and swelling behavior measurements of the fabricated core-sheath fibrous scaffolds indicate the suitability of the structures in cellular activities. Saos-2 bone osteosarcoma cells are employed to determine the biocompatibility of the scaffolds, wherein none of the scaffolds possess any cytotoxicity effect, while cell proliferation of 94% is obtained for PCL-PVA/5%HA fibers. The alkaline phosphatase activity results suggest the osteogenic activities on the scaffolds begin earlier than day 7. Overall, adaptations of co-axial pressurized gyration provides the flexibility to embed or encapsulate bioactive substances in core-sheath fiber assemblies and is a promising strategy for bone healing.


Assuntos
Durapatita , Engenharia Tecidual , Proliferação de Células , Durapatita/química , Poliésteres/química , Álcool de Polivinil , Engenharia Tecidual/métodos , Alicerces Teciduais/química
9.
IET Nanobiotechnol ; 14(7): 617-622, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33010138

RESUMO

This study aimed to develop sorafenib loaded magnetic microspheres for the treatment of hepatocellular carcinoma. To achieve this goal, superparamagnetic iron oxide nanoparticles (SPIONs) were synthesised and encapsulated in alginate microspheres together with an antineoplastic agent, sorafenib. In the study, firstly SPIONs were synthesised and characterised by dynamic light scattering, energy-dispersive X-ray spectroscopy, and scanning electron microscopy. Then, alginate-SPIONs microspheres were developed, and further characterised by electron spin resonance spectrometer and vibrating sample magnetometer. Besides the magnetic properties of SPIONs, alginate microspheres with SPIONs were also found to have magnetic properties. The potential use of microspheres in hyperthermia treatment was then investigated and an increase of about 4°C in the environment was found out. Drug release studies and cytotoxicity tests were performed after sorafenib was encapsulated into the magnetic microspheres. According to release studies, sorafenib has been released from microspheres for 8 h. Cytotoxicity tests showed that alginate-SPION-sorafenib microspheres were highly effective against cancerous cells and promising for cancer therapy.


Assuntos
Alginatos/química , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Microesferas , Sorafenibe/química , Animais , Antineoplásicos/química , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Portadores de Fármacos , Sistemas de Liberação de Medicamentos , Liberação Controlada de Fármacos , Espectroscopia de Ressonância de Spin Eletrônica , Compostos Férricos/química , Células Hep G2 , Humanos , Hipertermia , Técnicas In Vitro , Luz , Magnetismo , Nanopartículas de Magnetita/química , Nanopartículas Metálicas/química , Camundongos , Neoplasias/metabolismo , Tamanho da Partícula , Pós , Espalhamento de Radiação , Temperatura , Espectroscopia por Absorção de Raios X
10.
J Prosthet Dent ; 124(6): 799.e1-799.e5, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-33039186

RESUMO

STATEMENT OF PROBLEM: The separation of a denture liner from the denture base can be a clinical problem. Different surface treatments to increase the bond have been evaluated, but studies comparing the effect of argon plasma and erbium-doped yttrium aluminum garnet (Er:YAG) laser on the bond between acrylic resin and a denture liner are lacking. PURPOSE: The purpose of this in vitro study was to evaluate the effect of argon plasma and Er:YAG laser treatments on the bond strengths of acrylic resin to 2 denture liners. MATERIALS AND METHODS: Heat-polymerized acrylic resin (Acron Duo) was bonded to silicone soft-liner materials (Molloplast B, n=30; Mollosil, n=30) to create control specimens (n=10), argon plasma treatment (n=10), and Er:YAG laser treatment (n=10). Silicone liners were polymerized on resin specimens. The tensile bond strength test was performed with a crosshead speed of 10 mm/min with a 10-N load until failure. Data were analyzed by using the Kruskal-Wallis test and unpaired t test (α=.05). RESULTS: The laser group showed significantly higher bond strength than the argon plasma group for both Molloplast-B (P=.001) and Mollosil (P<.001). The highest tensile bond strength values were determined in the laser-treated Molloplast-B group (1.325 ±0.119 MPa) while the lowest bond strength values were determined in the Mollosil control group (0.384 ±0.018 MPa). CONCLUSIONS: Argon plasma and Er:YAG laser applications increases the tensile bond strength between soft-liner material and resin. Er:YAG laser treatment results in higher bond strength values than treatment with argon plasma for 1 minute.


Assuntos
Colagem Dentária , Reembasadores de Dentadura , Lasers de Estado Sólido , Gases em Plasma , Resinas Acrílicas , Argônio , Bases de Dentadura , Teste de Materiais , Propriedades de Superfície , Resistência à Tração
11.
Langmuir ; 36(39): 11429-11441, 2020 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-32903006

RESUMO

This work focuses on the synthesis of oil-layered microbubbles using two microfluidic T-junctions in series and evaluation of the effectiveness of these microbubbles loaded with doxorubicin and curcumin for cell invasion arrest from 3D spheroid models of triple negative breast cancer (TNBC), MDA-MB-231 cell line. Albumin microbubbles coated in the drug-laden oil layer were synthesized using a new method of connecting two microfluidic T-mixers in series. Double-layered microbubbles thus produced consist of an innermost core of nitrogen gas encapsulated in an aqueous layer of bovine serum albumin (BSA) which in turn, is coated with an outer layer of silicone oil. In order to identify the process conditions leading to the formation of double-layered microbubbles, a regime map was constructed based on capillary numbers for aqueous and oil phases. The microbubble formation regime transitions from double-layered to single layer microbubbles and then to formation of single oil droplets upon gradual change in flow rates of aqueous and oil phases. In vitro dissolution studies of double-layered microbubbles in an air-saturated environment indicated that a complete dissolution of such bubbles produces an oil droplet devoid of a gas bubble. Incorporation of doxorubicin and curcumin was found to produce a synergistic effect, which resulted in higher cell deaths in 2D monolayers of TNBC cells and inhibition of cell proliferation from 3D spheroid models of TNBC cells compared to the control.


Assuntos
Microbolhas , Microfluídica , Doxorrubicina/farmacologia , Gases , Soroalbumina Bovina
12.
J Periodontal Res ; 55(5): 694-704, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32776328

RESUMO

OBJECTIVE: To test the surface properties and in vitro effects of a new sequential release system on MC3T3-E1 cells for improved osseointegration. BACKGROUND: BMP6-loaded anodized titanium coated with PDGF containing silk fibroin (SF) may improve osseointegration. METHODS: Titanium surfaces were electrochemically anodized, and SF layer was covered via electrospinning. Five experimental groups (unanodized Ti (Ti), anodized Ti (AnTi), anodized + BMP6-loaded Ti (AnTi-BMP6), anodized + BMP6 loaded + silk fibroin-coated Ti (AnTi-BMP6-SF), and anodized + BMP6-loaded + silk fibroin with PDGF-coated Ti (AnTi-BMP6-PDGF-SF)) were tested. After SEM characterization, contact angle analysis, and FTIR analysis, the amount of released PDGF and BMP6 was detected using ELISA. Cell proliferation (XTT), mineralization, and gene expression (RUNX2 and ALPL) were also evaluated. RESULTS: After successful anodization and loading of PDGF and BMP6, contact angle measurements showed hydrophobicity for TiO2 and hydrophilicity for protein-adsorbed surfaces. In FTIR, protein-containing surfaces exhibited amide-I, amide-II, and amide-III bands at 1600 cm-1 -1700 cm-1 , 1520 cm-1 -1540 cm-1 , and 1220 cm-1 -1300 cm-1 spectrum levels with a significant peak in BMP6- and/or SF-loaded groups at 1100 cm-1 . PDGF release and BMP6 release were delayed, and relatively slower release was detected in SF-coated surfaces. Higher MC3T3-E1 proliferation and mineralization and lower gene expression of RUNX2 and ALPL were detected in AnTi-BMP6-PDGF-SF toward day 28. CONCLUSION: The new system revealed a high potential for an improved early osseointegration period by means of a better factor release curve and contribution to the osteoblastic cell proliferation, mineralization, and associated gene expression.


Assuntos
Osseointegração , Fator de Crescimento Derivado de Plaquetas , Titânio , Animais , Proliferação de Células , Camundongos , Fator de Crescimento Derivado de Plaquetas/farmacologia , Propriedades de Superfície
13.
J Colloid Interface Sci ; 561: 470-480, 2020 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-31759557

RESUMO

When sessile nanofluid droplets evaporate, solid nanoparticles can be organized in a wide variety of patterns on the substrate. The composition of the nanofluid, internal flow type of droplet and the rate of drying affect drop geometry, and the final pattern. Using poly(lactic-co-glycolic acid)-block-poly(ethylene glycol)(PLGA-b-PEG) as the example, we produced micro-stripe patterning from nanoparticles by drying of sessile fluid droplets. We investigated the nanoparticle properties and flow dynamics to clarify their effects on the patterning. Nanoparticles were prepared by hydrodynamic flow focusing using a T-junction microfluidic device with high production efficiency and the ability to generate an extremely narrow size distribution. PLGA-b-PEG was prepared as oil phase in acetonitrile and water/oil flow rate was changed from 1 to 3 at constant oil phase flow rate (50 µL/min). Then, nanofluid was collected on the surface as sessile droplets within acetonitrile/water binary dispersed phase. Depending on size, charge and size-distribution, the nanoparticles deposited on the surface exhibited various patterns. Dynamic Light and X-ray Scattering measurements showed that, approximately 100 nm particles with relatively low PDI (0.04) were produced for the first time in surfactant free conditions in a microfluidic device and they generated self-assembled ordered patterns, which are regulated by the type of internal flow in the sessile nanofluid droplet during sequential evaporation of acetonitrile and water.

14.
Pharm Dev Technol ; 24(9): 1144-1154, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31298072

RESUMO

Ibuprofen is a non-steroidal anti-inflammatory drug for the treatment of Rheumatoid Arthritis and osteoarthritis. In this study, we prepared topical gel network for enhancement of ibuprofen penetration, maintenance of controlled release and increased patient compliance. Nanoparticles containing ibuprofen were prepared by means of emulsion formation/solvent diffusion method using synthesized copolymer. Nanoparticles were then conjugated with aminoethylmethacrylate, resulting in ibuprofen-loaded nanoparticles in PLGA-b-PEG-MA structure. Ibuprofen-loaded gel networks were developed by crosslinking nanoparticles via UV exposure. Suitability for topical application has been assessed through characterization of particle size, zeta potential, morphology, encapsulation efficiency, in vitro release, cytotoxicity and enhancement of in vitro wound healing. The mean diameter of nanoparticles was measured as 230 ± 20 nm. Gel network formulations with higher particle size (2800 ± 350 nm) and zeta potential (39.8 ± 9.2 mV), depending on conjugation of methacrylate within copolymeric structure, and having encapsulation efficacy of 73.6 ± 2.8% were prepared. The in vitro release of ibuprofen was sustained for more than 7 hours. Gel network improved collagen synthesis, type I collagen mRNA expression and fibrosis in dose dependent manner. Based on this, we can conclude that PLGA-b-PEG gel network might be a promising systems for the local delivery of ibuprofen in RA patients.


Assuntos
Anti-Inflamatórios não Esteroides/administração & dosagem , Géis/química , Ibuprofeno/administração & dosagem , Metacrilatos/química , Nanocápsulas/química , Polietilenoglicóis/química , Poliglactina 910/química , Administração Tópica , Animais , Anti-Inflamatórios não Esteroides/farmacocinética , Anti-Inflamatórios não Esteroides/farmacologia , Linhagem Celular , Colágeno/metabolismo , Preparações de Ação Retardada/química , Ibuprofeno/farmacocinética , Ibuprofeno/farmacologia , Camundongos , Raios Ultravioleta
15.
Mater Sci Eng C Mater Biol Appl ; 102: 756-763, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31147048

RESUMO

Degenerative cartilage is the pathology of severe depletion of extracellular matrix components in articular cartilage. In diseases like osteoarthritis, misregulation of microRNAs contributes the pathology and collectively leads to disruption of the homeostasis. In this study chondroitin sulfate/hyaluronic acid/chitosan nanoparticles were prepared and successfully characterized chemically and morphologically. Results demonstrated higher chondroitin sulfate amounts led smaller nanoparticles, but lower surface zeta potential due to high electronegativity. After optimization of chondroitin sulfate amounts regarding size and charge, nanoparticles were loaded with microRNA-149-5p, a therapeutic miRNA downregulated in osteoarthritis, and evaluated focusing on their loading efficiency, release behaviour, cytotoxicity and gene transfection efficiency in vitro. Results showed all nanoparticle formulations were non-toxic and promising gene delivery agents, due to increased levels of microRNA-149-5p and decreased mRNA levels of microRNA's target, FUT-1. Highest gene transfection efficiency was obtained with the nanoparticle formulation which had the highest chondroitin sulfate load and smallest size. In addition, owing to their high chondroitin sulfate cargo, all nanoparticles were reported to enhance chondrogenesis, which was demonstrated by gene expression analysis and sulfated glycosaminoglycan (sGAG) staining. The obtained data suggest that the delivery of microRNA-149-5p via polysaccharide based carriers could achieve collaborative impact in cartilage regeneration and have a potential to enhance osteoarthritis treatment.


Assuntos
Condrogênese , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , MicroRNAs/metabolismo , Nanopartículas/química , Polissacarídeos/química , Morte Celular , Quitosana , Sulfatos de Condroitina/química , Difusão Dinâmica da Luz , Regulação da Expressão Gênica , Humanos , Ácido Hialurônico/química , Nanopartículas/ultraestrutura , Tamanho da Partícula , Espectroscopia de Infravermelho com Transformada de Fourier
16.
Anal Sci ; 34(7): 789-794, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29998960

RESUMO

Early diagnosis of cancer is the most important factor that increases the success of treatment. Therefore, the development of new diagnostic tools is a necessity. In this study, a new electrode surface was developed via modification of a disposable titanium electrode with anodic oxidation and coating of gold nanoparticle and chitosan. Titanium electrodes were anodized by several anodization parameters to obtain a nanoporous surface and characterized by scanning electron microscopy. Electrodes anodized in optimum conditions were modified with gold nanoparticles and chitosan for enhancing conductivity and functionalizing the surface of electrode, respectively. To detect prostate specific antigen (PSA), anti-PSA was bound onto the functional electrode surface. Modified electrodes were characterized with scanning electron microscopy and cyclic voltammetry and used for chronoamperometric detection of PSA. Limit of detection (LOD) of the designed electrode was found to be 7.8 ng mL-1 for PSA in a linear range of 0 - 100 ng mL-1.


Assuntos
Técnicas Eletroquímicas , Imunoensaio , Nanotubos/química , Antígeno Prostático Específico/análise , Titânio/química , Eletrodos , Humanos , Masculino , Tamanho da Partícula , Porosidade , Propriedades de Superfície
17.
Langmuir ; 34(27): 7989-7997, 2018 07 10.
Artigo em Inglês | MEDLINE | ID: mdl-29772899

RESUMO

Amphiphilic block copolymers are widely used in science owing to their versatile properties. In this study, amphiphilic block copolymer poly(lactic- co-glycolic acid)- block-poly(ethylene glycol) (PLGA- b-PEG) was used to create microdroplets in a T-junction microfluidic device with a well-defined geometry. To compare interfacial characteristics of microdroplets, dichloromethane (DCM) and chloroform were used to prepare PLGA- b-PEG solution as an oil phase. In the T-junction device, water and oil phases were manipulated at variable flow rates from 50 to 300 µL/min by increments of 50 µL/min. Fabricated microdroplets were directly collected on a glass slide. After a drying period, porous two-dimensional and three-dimensional structures were obtained as honeycomb-like structure. Pore sizes were increased according to increased water/oil flow rate for both DCM and chloroform solutions. Also, it was shown that increasing polymer concentration decreased the pore size of honeycomb-like structures at a constant water/oil flow rate (50:50 µL/min). Additionally, PLGA- b-PEG nanoparticles were also obtained on the struts of honeycomb-like structures according to the water solubility, volatility, and viscosity properties of oil phases, by the aid of Marangoni flow. The resulting structures have a great potential to be used in biomedical applications, especially in drug delivery-related studies, with nanoparticle forming ability and cellular responses in different surface morphologies.

18.
BMC Surg ; 17(1): 40, 2017 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-28416010

RESUMO

BACKGROUND: An incisional hernia is a common complication following abdominal surgery. Polypropylene mesh is frequently used in the repair of such defects and has nearly become the standard surgical treatment modality. Though they are very effective in reducing recurrence, mesh materials exhibit a strong stimulating effect for intraabdominal adhesion. The thymoquinone (TQ) extracted from Nigella sativa seeds has potential medical properties. TQ has anti-inflammatory, antioxidant and antibacterial properties. The aim of this study is to coat polypropylene mesh with TQ in order to investigate the effect of surface modification on intraabdominal adhesions. METHODS: TQ-coated polypropylene mesh material was tested for cytotoxicity, contact angle, surface spectroscopy, TQ content, sterility, and electron microscopic surface properties. An experimental incisional hernia model was created in study groups, each consisting of 12 female Wistar rats. The defect was closed with uncoated mesh in control group, with polylactic acid (PLA) coated mesh and PLA-TQ coated mesh in study groups. Adhesion scores and histopathologic properties were evaluated after sacrifice on postoperative 21th day. RESULTS: Granuloma formation, lymphocyte and polymorphonuclear leukocyte infiltration, histiocyte fibroblast and giant cell formation, capillary infiltration, collagen content were significantly reduced in the PLA-TQ coated mesh group (p < 0.05). Though not statistically significant, likely due to the limited number of study animals, adhesion formation was also reduced in the PLA-TQ coated mesh group (p: 0.067). CONCLUSION: TQ coated mesh is shown to reduce adhesion formation and TQ is a promising coating material for mesh surface modification.


Assuntos
Benzoquinonas/química , Polipropilenos/química , Telas Cirúrgicas , Aderências Teciduais/prevenção & controle , Adesivos , Animais , Colágeno/metabolismo , Feminino , Poliésteres/química , Ratos , Ratos Wistar , Aderências Teciduais/etiologia
19.
Mater Sci Eng C Mater Biol Appl ; 66: 221-229, 2016 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-27207058

RESUMO

Peptide based hydrogels gained a vast interest in the tissue engineering studies thanks to great superiorities such as biocompatibility, supramolecular organization without any need of additional crosslinker, injectability and tunable nature. Fmoc-diphenylalanine (FmocFF) is one of the earliest and widely used example of these small molecule gelators that have been utilized in biomedical studies. However, Fmoc-peptides are not feasible for long term use due to low stability and weak mechanical properties at neutral pH. In this study, Fmoc-FF dipeptides were mechanically enhanced by incorporation of alginate, a biocompatible and absorbable polysaccharide. The binary hydrogel is obtained via molecular self-assembly of FmocFF dipeptide in alginate solution followed by ionic crosslinking of alginate moieties with varying concentrations of calcium chloride. Hydrogel characterization was evaluated in terms of morphology, viscoelastic moduli and diffusional phenomena and the structures were tested as 3D scaffolds for bovine chondrocytes. In vitro evaluation of scaffolds lasted up to 14days and cell viability, sulphated glycosaminoglycan (sGAG) levels, collagen type II synthesis were determined. Our results showed that alginate incorporation into FmocFF hydrogels leads to better mechanical properties and higher stability with good biocompatibility.


Assuntos
Alginatos/química , Materiais Biocompatíveis/química , Cloreto de Cálcio/química , Hidrogel de Polietilenoglicol-Dimetacrilato/química , Fenilalanina/análogos & derivados , Animais , Materiais Biocompatíveis/farmacologia , Bovinos , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Condrócitos/citologia , Condrócitos/efeitos dos fármacos , Condrócitos/metabolismo , Colágeno Tipo II/metabolismo , Citocinas/análise , Dipeptídeos , Liberação Controlada de Fármacos , Ensaio de Imunoadsorção Enzimática , Ácido Glucurônico/química , Glicosaminoglicanos/metabolismo , Ácidos Hexurônicos/química , Humanos , Fenilalanina/química , Reologia , Engenharia Tecidual , Alicerces Teciduais/química , Vancomicina/química , Vancomicina/metabolismo
20.
Mater Sci Eng C Mater Biol Appl ; 35: 100-5, 2014 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-24411357

RESUMO

This study aims to generate a bactericidal agent releasing surface via nanotube layer on titanium metal and to investigate how aspect ratio of nanotubes affects drug elution time and cell proliferation. Titania nanotube layers were generated on metal surfaces by anodic oxidation at various voltage and time parameters. Gentamicin loading was carried out via simple pipetting and the samples were tested against S. aureus for the efficacy of the applied modification. Drug releasing time and cell proliferation were also tested in vitro. Titania nanotube layers with varying diameters and lengths were prepared after anodization and anodizing duration was found as the most effective parameter for amount of loaded drug and drug releasing time. Drug elution lasted up to 4 days after anodizing for 80 min of the samples, whereas release completed in 24 h when the samples were anodized for 20 min. All processed samples had bactericidal properties against S. aureus organism except unmodified titanium, which was also subjected to drug incorporation step. The anodization also enhanced water wettability and cell adhesion results. Anodic oxidation is an effective surface modification to enhance tissue-implant interactions and also resultant titania layer can act as a drug reservoir for the release of bactericidal agents. The use of implants as local drug eluting devices is promising but further in vivo testing is required.


Assuntos
Adesão Celular/fisiologia , Gentamicinas/administração & dosagem , Nanocápsulas/química , Nanotubos/química , Staphylococcus aureus/fisiologia , Titânio/química , Antibacterianos/administração & dosagem , Antibacterianos/química , Sobrevivência Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/síntese química , Implantes de Medicamento/administração & dosagem , Implantes de Medicamento/química , Gentamicinas/química , Teste de Materiais , Nanocápsulas/ultraestrutura , Nanotubos/ultraestrutura , Tamanho da Partícula , Staphylococcus aureus/efeitos dos fármacos , Molhabilidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...